Measuring the Ireversibility of Numerical Schemes for Reversible Stochastic Differential Equations
نویسندگان
چکیده
Abstract. For a Markov process the detailed balance condition is equivalent to the time-reversibility of the process. For stochastic differential equations (SDE’s) time discretization numerical schemes usually destroy the property of time-reversibility. Despite an extensive literature on the numerical analysis for SDE’s, their stability properties, strong and/or weak error estimates, large deviations and infinite-time estimates, no quantitative results are known on the lack of reversibility of the discrete-time approximation process. In this paper we provide such quantitative estimates by using the concept of entropy production rate, inspired by ideas from non-equilibrium statistical mechanics. The entropy production rate for a stochastic process is defined as the relative entropy (per unit time) of the path measure of the process with respect to the path measure of the time-reversed process. By construction the entropy production rate is nonnegative and it vanishes if and only if the process is reversible. Crucially, from a numerical point of view, the entropy production rate is an a posteriori quantity, hence it can be computed in the course of a simulation as the ergodic average of a certain functional of the process (the so-called Gallavotti-Cohen (GC) action functional). We compute the entropy production for various numerical schemes such as explicit Euler-Maruyama and explicit Milstein’s for reversible SDEs with additive or multiplicative noise. Additionally, we analyze the entropy production for the BBK integrator of the Langevin processes. We show that entropy production is an observable that distinguishes between different numerical schemes in terms of their discretization-induced irreversibility. Furthermore, our results show that the type of the noise critically affects the behavior of the entropy production rate.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کامل